Problem Set 1 – Statistical Physics B

Problem 1: Exact solution of the one-dimensional Ising model

In one spatial dimension the canonical partition function of the Ising model is

$$Z = \sum_{\{s_i\}} \exp\left[\sum_{i=1}^{N} (hs_i + Ks_i s_{i+1})\right],$$

with $h = \beta \mu H$ and $K = \beta J$. Here H is an external magnetic field and J is a coupling constant between neighbouring spins. Consider periodic boundary conditions, $s_{N+1} = s_1$. This case can be solved analytically with the so-called transfer matrix method. This exercise will guide you through this procedure.

(a) Show that $\sum_{i=1}^{N} s_i = \sum_{i=1}^{N} (s_i + s_{i+1})/2$. Use this result to show that $Z = \text{Tr } \mathbf{z}^N$, with the matrix \mathbf{z} given by

$$\mathbf{z} = \begin{pmatrix} e^{-h+K} & e^{-K} \\ e^{-K} & e^{h+K} \end{pmatrix}.$$

- (b) Show using the eigenrepresentation of \mathbf{z} that $Z = \lambda_{+}^{N} + \lambda_{-}^{N}$, with λ_{\pm} the eigenvalues of \mathbf{z} . We define $\lambda_{+} > \lambda_{-}$.
- (c) Determine λ_{\pm} and show that the Helmholtz free energy for $N \to \infty$ becomes

$$\beta F/N = -K - \ln\left(\cosh h + \sqrt{\sinh^2 h + e^{-4K}}\right)$$

(d) Compute the average magnetization and show that it vanishes for $h \to 0^+$. Does the onedimensional Ising model exhibit a phase transition?